

Advanced Training for CBM Geologists

Coal and Rock

Review Ulaanbaatar, Mongolia

16 June 2022

Tim A Moore, Managing Director, Cipher Consulting Pty Ltd

Cipher Doc#: 22-425

Advanced Training for CBM Geologists

		total time	
from	То	(hr:min)	Торіс
9:00	9:15	0:15	Opening Remarks & Introduction
9:15	10:45	1:30	Origin of Reservoir Properties: from Peat to Pores
10:45	11:00	0:15	Questions/Discussion
11:00	11:15	0:15	Coffee Break
11:15	12:45	1:30	Unconventional Hydrocarbons and Geological Models
12:45	13:00	0:15	Questions/Discussion
13:00	14:00	1:00	LUNCH
14:00	14:45	0:45	CBM Drilling Equipment & Methods
14:45	15:00	0:15	Questions/Discussion
15:00	16:00	1:00	Coal & Rock Review - What and How to Characterise
16:00	16:15	0:15	Questions/Discussion
16:15	16:30	0:15	Coffee Break
16:30	17:30	1:00	Measuring Gas
17:30	18:00	0:30	Critical CBM Reservoir Properties: Know where to Place Your Efforts
18:00	18:15	0:15	Questions/Discussion
18:15	18:30	0:15	Closing Remarks

NOTE: Times are in UB, Mongolian Times

 Clastic Rock Types Found in Coal-Bearing sections

- Vertical, Lateral Variations & Models
- Macroscopic Coal Types
- Microscopic Coal Components

The important attributes of rock descriptions

Texture: grain size

conglomerates (cobble, pebble, granule) sandstone (coarse, medium, fine) siltstone mudstone claystone Colour: often composition related black dark grey/brown medium grey/brown light grey/brown **Structure:** bedding and sedimentary features bedding: sedimentation unit thick (60-120cm), thin, very thin etc equal, parallel, wavy, hummocky, flaser etc primary sedimentary features massive laminated (horizontal, wavy, cross laminated) graded imbricated secondary sedimentary features TO BE USED IN soft sediment deformation **CONJUNCTION** burrowing WITH 3D root penetration **GEOMETRY!**

Rock Types Found in Coal-Bearing Sequences

Rock Types Found in Coal-Bearing Sequences

 Clastic Rock Types Found in Coal-Bearing sections

Vertical, Lateral Variations & Models

- Macroscopic Coal Types
- Microscopic Coal Components

Vertical Variation of Rock Types

Lateral variability of coal & rock

Building Models: Appalachian Basin (Carboniferous)

Outcrops show even higher detail of variability

from Horne 1978

COMMONLY OCCURRING SEDIMENTARY ENVIRONMENTS IN COAL MEASURES

€ipher

Examples of measured sections demonstrating variability in overburden resulting from different sedimentary environments (from Horne, 1978) THESE ARE NOT THE ONLY ONES!

- Clastic Rock Types Found in Coal-Bearing sections
- Vertical, Lateral Variations & Models
- Macroscopic Coal Types
- Microscopic Coal Components

BASIC FACTS

COAL is not just a BLACK ROCK! Coal character varies.....

- Within seams
- across pits
- between different mine sites
- Between seams

WHY?

- Different starting ingredients GRADE (composition)
 - plants, water, mineral matter
- Different levels of decay of plant TYPE ingredients in the peat mire
 - death, decay, humification
- Different ranks (thermal maturity or _____ RANK coalification)
 - heat, pressure, time

Starting Ingredients, i.e. the plants change through time due to palaeogeography and evolution

Seam Level Terminology

Fig. 5.1 Hypothetical column section of a coal seam illustrating plies, bands, partings etc.

from Ward, 1984

Coal Seam

a stratum or bed of coal; upper contact with rock called "roof", lower contact called "floor"

Ply/Bench (of coal)

a mineable section of coal or a unit of a coal seam that can be traced laterally for some distance; it is usually bounded by mappable rock partings or a significant change in lithotype; generally used as a basis for sampling. Synonomous with the term ply

Parting

a rock band or thin bed within a coal seam; often rock partings become thick and create a divergence of the coal beds known as a split.

Band

A significant layer within a seam or ply; if non-coal often referred to as "clay band" or "dirt band" or "tuff band". Colloquial term "penny band" denotes thickness. Also used to describe the organic units within coal lithotypes.

Coal Type

a classification of coal distinguished on the basis of the constituent plant materials; megascopic classification is a "lithotype".

 AT FACE OR IN CORE •SEPARATE COAL SEAM **INTO MAPPABLE** "PLIES" OR "BENCHES" •WHY? •SEAM CORRELATION SELECTIVE MINING QUALITY CONTROL •GEOTECHNICAL **PROPERTIES**

> Band width rule 5mm Australian system 3 mm US system 10 mm European system

LATERAL CORRELATION OF LITHOTYPE PROFILES IN THE GOONYELLA MIDDLE SEAM

Can the composition of the plies change laterally?

MACROSCOPIC CLASSIFICATION COAL LITHOTYPES (not including stone partings)

€ipher

Australian Standard descriptions for coal lithotypes

Lithoty	уре	Description		
Bright coal		Vitreous to subvitreous lustre; even to conchoidal fracture; brittle; may		
(vitrain)	B (Br)	contain up to 10% dull coal bands less than 5mm thick.		
Banded bright coal		Mainly bright coal containing thin (less than 5mm) dull coal bands ranging		
(bright clarain)	Bb	in proportion between 10 and 40%; even fracture.		
Banded coal		Contains bright and dull coal bands (all less than 5mm) ranging in		
(clarain)	BD (IB)	proportion between 40 and 60% each.		
Banded dull coal		Mainly dull coal containing thin (less than 5mm) bright bands in proportion		
(Clarodurain)	Db	between 10 and 40%; uneven fracture.		
Dull coal		Matt lustre and uneven fracture; may contain 10% of bright coal bands		
(durain)	D (DM)	less than 5mm thick.		
Fibrous coal		Dull with satin sheen; friable; may contain up to 10% of other coal		
(fusain)	F	lithotypes less than 5 mm thick.		
		Contains between 30 and 60% of clay and silt either in intimate mixture		
Shaly coal	Cs	with coal or in separate bands each less than 5mm thick.		
Coaly shale,				
mudstone,		Any sediment containing 60 to 90% finely disseminated carbonaceous		
sandstone etc.		matter.		
Shale, mudstone,				
siltstone, sandstone,				
etc.		Any sediment containing less than 10% carbonaceous matter.		

COAL TYPE-SCALES OF CHARACTERISATION

COAL TYPE AND FRACTURE/CLEAT

Bright banded coal highly cleated thin to thick vitrain

Dull coal poorly cleated minor thin vitrain

> WHICH WILL BE MORE FRIABLE? WHICH WILL BE MORE PERMEABLE? (assuming the cleats are not mineralised)

Cleat: The network of micro fractures coals develop when subjected to changes in stress or uplift.

Brown Coal Lithotypes: Mine highwalls

Macroscopic characterisation of coal

Bright, nonbanded

Bright, >20% banded

Macro- & Microscopic

Macroscopic predicts microscopic

%Volatile Matter vs. Coal Type

Coal type and coal properties

Macroscopic Coal Type

%Vitrain Bands vs Coal Thickness

€ipher

Coal type distribution

- Clastic Rock Types Found in Coal-Bearing sections
- Vertical, Lateral Variations & Models
- Macroscopic Coal Types

Microscopic Coal Components

Organic Components

²⁵⁰ um

What controls the taste of the muffin????

.....the ingredients!!!

ENCYCLOPÆDIA BRITANNICA maceral definition

microscopic organic component of coal consisting of an irregular mixture of different chemical compounds. Macerals are analogous to minerals in inorganic rocks, but they differ from minerals in that they have no fixed chemical composition and lack a definite crystalline structure. Macerals change progressively both chemically and physically as the rank of coal advances. (*Rank constitutes position in the lignite-to-anthracite series and is primarily based on increasing carbon content and increasing fuel value.*)

Macerals for "black coal", i.e. bituminous coal, are classified into three major groups: <u>vitrinite</u>, <u>inertinite</u>, and <u>liptinite</u> (exinite)

Vitrinite (Huminite is the term used for brown coals and lignites)

is derived from woody plant tissue and includes the macerals collinite and telinite. Most coals have a high percentage of vitrinites.

<u>Inertinite</u>

group comprises fusinite, micrinite, sclerotinite, and semi-fusinite [and inertodetrinite, macrinite], which are all rich in carbon [due to primary oxidation from mouldering or charring].

Liptinite

macerals, characterized by a high hydrogen content, include alginite, cutinite, resinite, and sporinite [liptodetrinite, suberinite, exudatinite, bituminite, fluorinite....].

van Krevelen, 1993

Australian Standard 2856-1986/1995 bituminous coals *brown coal only

_	MACERAL	MACERAL SUBGROUP	MACERAL	ORIGINS
Criteria for recognition	GROUP	TELOVITDINITE	Taxtinita*	Wall preserved call well
	VIIKINIIE	IELUVIIKINIIE	Textilite	wen preserved cen wan
•colour		Occurs as bands or lenses	Texto-ulminite*	Partially gelified cell wall
 reflectance 			Eu-ulminite*	Completely gelified cell wall
			Telocollinite	Gelified cell wall and filling
•morphology				~
•size		DETROVITRINITE	Attrinite*	Sparsely packed matrix of cell
		Occurs in matrix	Densinite*	Finely packed matrix of cell
 polisned relief 			Densinte	fragments
•fluorescence			Desmocollinite	Gelified humic matrix
ndereccentee				
		GELOVITRINITE	Corpocollinite	Gelified cell filling in tissue
Simple steps		Occurs in matrix	Dorigolinito*	(CI) in matrix (CM)
			Poricorpocollinite	Vesicular humic gelified cell
•Is it grey, black or			1 onto apoto annao	filling
white?			Eugelinite	Humic gel
	LIPTINITE	LIPTINITE	Sporinite, cutinite,	Spores, waxes, resin, cuticle,
•Is it Structured (telo),		Osauna in matrix	resinite, liptodetrinite	suberin, algae, expulsed lipid,
unstructured attrital		Occurs in matrix	fluorinite	elc
			exsudatinite,	
(detro) or gelified			bituminite	
(aelo)?	INERTINITE	TELO-INERTINITE	Semifusinite	Partially oxidised tissue of low
		Occurre of longer		and moderate reflectance
•<20um grey? <30um		Occurs as lenses	Fusinite	(mouldering, cnar?) Oxidised tissue (char)
white?			Sclerotinite/Funginite	Fungal spore/test/stalk
		DETRO-INERTINITE	Inertodetrinite	Oxidised cell wall fragment or
				cell filling of moderate to high
	1	Occurs in matrix		reflectance

Micrinite

Macrinite

GELO-INERTINITE

Occurs in matrix

Fine grained oxidised material

(<5microns)

Oxidised gel

Reflected light, oil immersion lenses

Photomicrographs of polished peat sections showing different levels of decay

- a. Undecomposed plant cell walls rich in cellulose
- b. Partially humified plant cell walls; longitudinal section through a stem
- c. Humified plant cell walls and cell fillings; radial section through a stem and its bark
- d. Gelified plant material; forming matrix

All photomicrographs under reflected light, oil immersion

Photomicrographs of coal

Photomicrographs of coal

Photomicrographs of coal

Stages and Causes of Coalification

Physical Changes

Chemical Changes

Compaction Loss of moisture Loss of volatile matter Decrease hydrogen content Increase carbon content

Organics and Size Distribution - COAL

€ipher

Organics and Size Distribution - COAL

from Shearer & Moore, 1994

Organics and Size Distribution - COAL *⁺ ⁺ ⁺*

from Shearer & Moore, 1994

from Moore & Hilbert , 1992

Organics and Size Distribution - Miocene

Organics and Size Distribution – Artificial Coal

48

Organics and Size Distribution – Size in Peat Bog

from Moore et al., 2000

Organics and Size Distribution

- 1. Vertical and lateral rock types in coalbearing sediments aid in basin modeling
- 2. There are several macroscopic classifications for coal – important to use the right one
- 3. Macroscopic coal type are directly related to coal property type
- 4. Microscopically coal is very heterogenous
- 5. Coal texture is mostly defined in the peat stage

Australia Mongolia Extractives Program Phase 2 (AMEP 2) is supported by the Australian Government through the Department of Foreign Affairs and Trade (Australian Aid) and implemented by Adam Smith International.

Adam Smith International

Tim Moore is currently the Managing Director of Cipher Consulting Pty Ltd specializing in advising on coal and coalbed methane exploration. He is also Adjunct Associated Professor at the School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia and a Distinguished Visiting Professor at the School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China. Tim is also on the Editorial Boards for the International Journal of Coal Geology and the Indonesian Journal on Geoscience. He has over 260 published papers, reports and abstracts. Over the last 40 years, Tim has worked in production companies, academia and government positions in many parts of the world. (tmoore@ciphercoal.com)

If you want to know more go to the Cipher website & Blog: <u>https://www.ciphercoal.com</u>

Got Questions?

Please visit our website for more information about activities or contact **Oyunbileg Purev, Partnership Manager** at <u>oyunbileg@amep.mn</u>.

53

www.AMEP.mn Y AusMonXtractive

