

## MONGOLIA COAL BED METHANE – COMPARATIVE ASSESSMENT OF FISCAL REGIMES



Prepared by THREE60 Energy and The University of Queensland, Australia

19 April 2021

#### . . . . . . . . . . .

## DISCLAIMER

CONVENTIONAL GAS SHALE GAS Top seal Top seal Gas migration over geological times

The content of this presentation represents Three60 Energy's professional judgement and should not be considered a guarantee or prediction of results. Three60 Energy has made every effort to ensure that the interpretations, conclusions and recommendations presented herein are accurate and reliable in accordance with good industry practice and its own quality management procedures. It should be understood that any evaluation, particularly one involving exploration and potential future petroleum developments, may be subject to significant variations over short periods of time as new information becomes available. Three60 Energy cannot and does not guarantee the accuracy or correctness of any interpretation made by it of any of the data, documentation and information provided by the Company or others and shall not be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation or recommendation made by any of its officers, agents or employees. Three60 Energy does not warrant or guarantee, through the Services, this report or otherwise, any geological or commercial outcome. •••••

## Elements of PRESENTATION



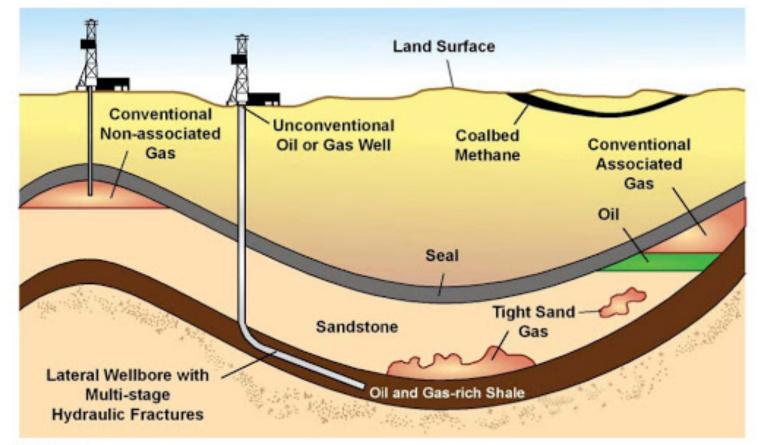
1. Objectives and Outcomes

2. Introduction

3. Coal Bed Methane Development

4. Fiscal Systems

- 5. Attracting International Investment
- 6. Economic Modeling and Results


7. Conclusions

# **Objectives and Outcomes**

To provide Mongolian Ministry of Mining and Heavy Industry, and the Mineral Resources and Petroleum Authority with advice on fiscal systems applicable to CBM in Queensland, Australia and other relevant jurisdictions.

To assist Mongolian authorities in understanding their options and making decisions supportive of the development of the CBM industry in Mongolia.

# Key Points – Understanding CBM



Significant cost and risk differences between conventional gas and petroleum and CBM  $\succ$ CBM reservoirs are highly variable over short distances

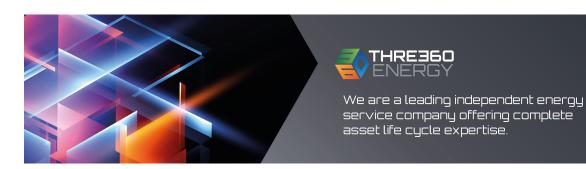
Holistic Approach in Attracting Investment to Mongolia

Prospectivity

- ✤Geoscience data, access to data
- Reasonable level of return to investors
- Approval process and Regulatory stability
- Fiscal system, legislation
- \*Now


## Modelling of Royalties vs PSC

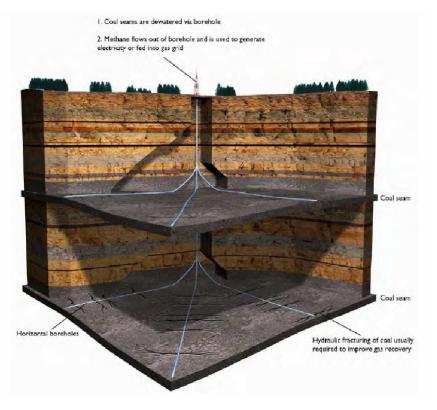
➤Scale: low, mid, high cases


➤Qualitative Factors

Government and Investors

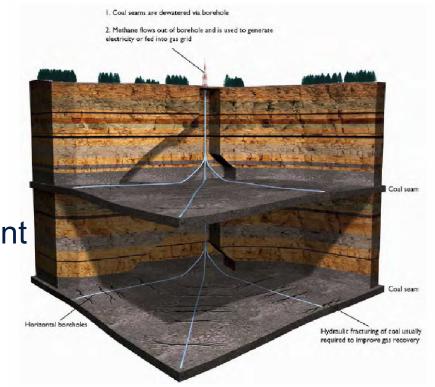
≻Indonesia




# Introduction






## **Coal Bed Methane Development**

- 1. Dewatering phase
- 2. CBM well performance uncertainty is reduced primarily during the execution phase of a development
- 3. It is not unusual for well performance to vary significantly over short lateral distances (e.g. 500 1,000 m).
- Experience in the Surat and Bowen Basins in Queensland, Australia, is that production from many wells (10's to 100's) is necessary to establish reliable production trends and reduce reservoir uncertainty from a larger pool of variable producers.



## Coal Bed Methane Development (Cont.)

- 5. Number of wells: conventional gas vs. CBM;
- 6. Risk, uncertainties;
- 7. Under- or over-capitalising;
- 8. Higher technical risks;
- 9. Additional costs associated with the water treatment and disposal; and
- 10. Periodic workovers.



## **Fiscal Systems**



## **GOVERNMENTS**

## **CONTRACTOR**

- ✓ Fair financial return;
- ✓Promote competition;
- ✓ Market efficiency;
- ✓ Limit administrative burden.

✓ Equity; and✓ Maximise wealth.

# Attracting International Investment: Investors

- Generally have a broad range of investment opportunities available to them;
- Ensure that risks and uncertainties can be adequately managed, and value realised;
- Typically invest in resource developments that align with their experience and capability;
- Prospectivity; and
- Keep development costs low.

Attracting International Investment: Key issues

Economic Viability

Prospectivity

Political risk



# Attracting International Investment: Political Risk

- resource nationalisation;
- expropriation of assets;
- **\***expanding Taxes;
- progressive labour legislation;



- future and land access that are subject to national or state government approvals;
- unnecessary delays in granting approvals; and
- changes in the fiscal terms.



## Economic Modelling – Model Settings

| Model Boundary Conditions / Settings                                                            | Agreed Model Settings<br>(Final)                           |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Project Start Date<br>(development decision going forward excluding sunk cost)                  | 2021                                                       |
| Project End Date                                                                                | 2060                                                       |
| Asset Life Duration<br>(concept to abandonment)                                                 | 40                                                         |
|                                                                                                 |                                                            |
| Discount Date                                                                                   | 1/1/2021                                                   |
| Discounting methodology                                                                         | Mid-year                                                   |
| Discount rates                                                                                  | 0, 7, 10, 15%                                              |
|                                                                                                 |                                                            |
| Macro Economic Assumptions                                                                      |                                                            |
| Input and Reporting Currency<br>(Royalty Tax model coverts \$USD input to \$AUD for evaluation) | \$USD                                                      |
| \$AUD to \$USD Currency Exchange Rate                                                           | 0.75                                                       |
| Inflation Rates for Capex and Opex                                                              | 2.00%                                                      |
| Gas Pricing                                                                                     | USD\$5.5 for domestic market<br>USD\$7.5 for export market |
| Price Escalation                                                                                | 2%                                                         |

## **Economic Modelling - Cases**

#### LOW



#### MID



#### **HIGH**



| 1. Market   | CBM to LNG production |
|-------------|-----------------------|
| 2. Capacity | Undeveloped 40 Bscf   |
| 3. Costs    | → 30-32 Bscf          |
| CAPEX       |                       |
| E&A         | \$USD 51 million      |
|             | \$USD 5 million       |

80 MW gas fired power generation Undeveloped 188 Bscf  $\rightarrow$ 146 Bscf \$USD 236 million \$USD 11 million

Pipeline export to an international buyer Undeveloped 1,48 Tscf → 1.015 Tscf \$USD 1,856.0 million \$USD 44 million 17

## **Economic Modelling – Assumptions**

| CAPEX and OPEX Assumptions                   | Basis and Unit Costs                                                                        |
|----------------------------------------------|---------------------------------------------------------------------------------------------|
| Well and Facility CAPEX                      | \$USD 0.450 MM/well                                                                         |
| Gas Production Related OPEX (variable)       | \$USD 0.050 / <u>Mscf</u> raw gas                                                           |
| Water Treatment OPEX ( <u>variable)</u>      | \$USD 0.100 /barrel of water                                                                |
| Workover, Maintenance & Field Operation OPEX | \$USD 0.5 MM fixed per year and \$USD 150,000 per online well                               |
| Gas Processing Tariffs ( <u>OPEX)</u>        | \$USD 0.750 / <u>Mscf</u> raw gas                                                           |
| Abandonment Cost (ABEX)                      | 6.5 % of well and facility CAPEX to be spent equally 5<br>years after the drilling campaign |
|                                              | 10 % of CAPEX for Low Case                                                                  |
| Exploration and Appraisal                    | 5 % of CAPEX for Mid Case                                                                   |
|                                              | 2.5 % of CAPEX for High Case                                                                |

| Market                                       | Netback Gas Price |
|----------------------------------------------|-------------------|
| Domestic Gas Sales for Low Case and Mid Case | \$USD 5.50 /MMBtu |
| Export Gas Sales for High Case               | \$USD 7.50 /MMBtu |

## Economic Modelling – PSC Terms

| Fiscal Terms                      | Petroleum Law              | Assumptions in the Analysis |
|-----------------------------------|----------------------------|-----------------------------|
| Royalty                           | 5 % - 10 %                 | 7.5 %                       |
| Cost Recovery Limit               | For CBM - to be determined | 70 %                        |
| Profit Sharing for Government     |                            |                             |
| 0- 1 Million m³/day               |                            | 30.0 %                      |
| 1-2 Million m³/day                |                            | 32.5 %                      |
| 2-3 Million m³/day                | For CBM - to be determined | 35.0 %                      |
| 3-4 Million m³/day                |                            | 37.5 %                      |
| >4 Million m³/day                 |                            | 40.0 %                      |
| Tax Rate                          | Exempted                   | 0.0 %                       |
| Dividend Withholding Tax          | Exempted                   | 0.0 %                       |
| VAT and Customs Tariff            | Exempted                   | 0.0 %                       |
| Contractor Participating Interest | 100 %                      | 100 %                       |
| Signature Bonus                   | As proposed by Contractor  | Not included                |
| Production Bonus                  | As proposed by Contractor  | Not included                |

#### •••••

### Low: Small Scale CBM to LNG Production for Transportation Fuel to the Local Market

| Development Metrics                                    | Value | Unit        |
|--------------------------------------------------------|-------|-------------|
| Raw Gas Production                                     | 40.6  | Bact.       |
| Total Sales Gas Produced                               | 31.5  | <u>Bact</u> |
| Total Water Produced                                   | 19.2  | MMstb       |
| Development Wells Drilled                              | 106   | # Wells     |
| Average Recovery Per Well (post fuel+flare use)        | 0.30  | Bscf/Well   |
| Revenues and Key Costs, \$USD Millions                 | Value | Comment     |
| Gross Revenue Total, nominal                           | 244.4 |             |
| E&A CAPEX, real 2020 Values                            | 5     |             |
| Development CAPEX, real 2020 Values                    | 51    |             |
| OPEX, real 2020 Values                                 | 84    |             |
| If applicable, Government Royalty, nominal             | 16    | Royalty-Tax |
| If applicable, Government Royalty, nominal             | 18    | PSC         |
| If applicable, Bonuses (Signing & Production), nominal | N/A   | PSC         |
| If applicable, Cost Oil, nominal                       | 166   | PSC         |
| If applicable, Profit Oil, nominal                     | 21    | PSC         |
| If applicable, Federal Government <b>Tax</b> , nominal | 8     | Royalty-Tax |

|          |             | HEADLIN       | E VALUE MET | RICS          |                |                        |
|----------|-------------|---------------|-------------|---------------|----------------|------------------------|
| Discount | NPVS & IRR  | Royalty-Tax   | x Regime    | PSC R         | egime          | Units                  |
| Rate, %  | in to a nin | Gross Project | Post-Tax    | Pre-Govt Take | Post-Govt Take |                        |
| 0%       | NPV0        | 52            | 28          | 52            | 13             | \$USD Millions, Nomina |
| 7%       | NPV7        | 11            | 4           | 11            | -2             | \$USD Millions, Nomina |
| 10%      | NPV10       | 5             | 1           | 5             | -4             | \$USD Millions, Nomina |
| 15%      | NPV15       | 1             | -2          | 1             | -5             | \$USD Millions, Nomina |
|          | SUSD IRR    | 15.9%         | 10.8%       | 15.9%         | 5.3%           | %                      |

| Profit/Investment Ratio, \$USD NPV10 | 1.03                     | 0.84                     |
|--------------------------------------|--------------------------|--------------------------|
| Max Exposure                         | \$USD-12.75 in year 2025 | \$USD-14.87 in year 2025 |
| Payback Year                         | 2033                     | 2039                     |



## Low: Small Scale CBM to LNG Production for Transportation Fuel to the Local Market

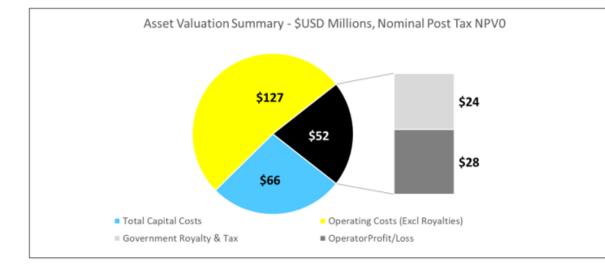



Figure 9: Low Case Asset Valuation, Royalty-Tax Pie Chart

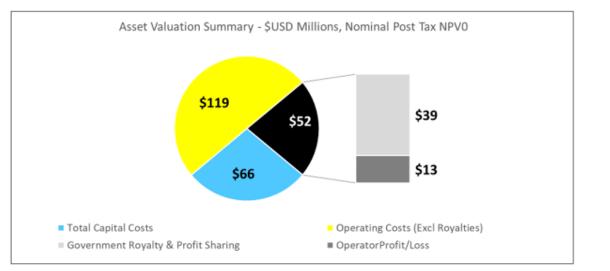



Figure 10: Low Case Asset Valuation, PSC Pie Chart

#### ••••

### Mid Case - CBM for gas fired power generation for local market base load power at 80 MW

| Development Metrics                                    | Value   | Unit        |
|--------------------------------------------------------|---------|-------------|
| Raw Gas Production                                     | 188.2   | Bscf        |
| Total Sales Gas Produced                               | 146.1   | Bsct        |
| Total Water Produced                                   | 89.1    | MMstb       |
| Development Wells Drilled                              | 492     | # Wells     |
| Average Recovery Per Well (post fuel+flare use)        | 0.30    | Bscf/Well   |
| Revenues and Key Costs, \$USD Millions                 | Value   | Comment     |
| Gross Revenue Total, nominal                           | 1,135.1 |             |
| E&A CAPEX, real 2020 Values                            | 11      |             |
| Development CAPEX, real 2020 Values                    | 236     |             |
| OPEX, real 2020 Values                                 | 319     |             |
| If applicable, Government Royalty, nominal             | 75      | Royalty-Tax |
| If applicable, Government Royalty, nominal             | 85      | PSC         |
| If applicable, Bonuses (Signing & Production), nominal | N/A     | PSC         |
| If applicable, Cost Oil, nominal                       | 793     | PSC         |
| If applicable, Profit Oil, nominal                     | 103     | PSC         |
| If applicable, Federal Government Tax, nominal         | 74      | Royalty-Tax |

|          |                  | HEADLIN       | IE VALUE MI | ETRICS        |                |                       |
|----------|------------------|---------------|-------------|---------------|----------------|-----------------------|
| Discount | NPVS & IRR       | Royalty-Tax   | Regime      | PSC R         | egime          | Units                 |
| Rate, %  |                  | Gross Project | Post-Tax    | Pre-Govt Take | Post-Govt Take |                       |
| 0%       | NPV0             | 353           | 203         | 353           | 165            | \$USD Millions, Nomin |
| 7%       | NPV7             | 84            | 38          | 84            | 24             | \$USD Millions, Nomin |
| 10%      | NPV10            | 48            | 17          | 48            | 6              | \$USD Millions, Nomin |
| 15%      | NPV15            | 17            | 0           | 17            | -7             | \$USD Millions, Nomin |
|          | <b>\$USD IRR</b> | 22.9%         | 15.1%       | 22.9%         | 11.8%          | %                     |

| Profit/Investment Ratio, \$USD NPV10 | 1.16                    | 1.06                     |
|--------------------------------------|-------------------------|--------------------------|
| Max Exposure                         | \$USD-52.5 in year 2025 | \$USD-57.88 in year 2025 |
| Payback Year                         | 2031                    | 2033                     |



# Mid Case - CBM for gas fired power generation for local market base load power at 80 MW



Figure 15: Mid Case Asset Valuation, Royalty-Tax Pie Chart

Figure 16: Mid Case Asset Valuation, PSC Pie Chart

#### •••••

### High Case - CBM for Pipeline Export to an International Buyer

| Development Metrics                                    | Value   | Unit        |
|--------------------------------------------------------|---------|-------------|
| Raw Gas Production                                     | 1,477.6 | Bact        |
| Total Sales Gas Produced                               | 1,147.0 | Bscf        |
| Total Water Produced                                   | 700.2   | MMstb       |
| Development Wells Drilled                              | 3,872   | # Wells     |
| Average Recovery Per Well (post fuel+flare use)        | 0.30    | Bscf/Well   |
| Revenues and Key Costs, \$USD Millions                 | Value   | Comment     |
| Gross Revenue Total, nominal                           | 12,207  |             |
| E&A Capital, real 2020 Values                          | 44      |             |
| Development Capital, real 2020 Values                  | 1,856   |             |
| OPEX, real 2020 Values                                 | 2,373   |             |
| If applicable, Government Royalty, nominal             | 1,161   | Royalty-Tax |
| If applicable, Government Royalty, nominal             | 916     | PSC         |
| If applicable, Bonuses (Signing & Production), nominal | N/A     | PSC         |
| If applicable, Cost Oil, nominal                       | 6,193   | PSC         |
| If applicable, Profit Oil, nominal                     | 2,298   | PSC         |
| If applicable, Federal Government <b>Tax</b> , nominal | 1,461   | Royalty-Tax |

| HEADLINE VALUE METRICS |                  |               |          |               |                |                        |  |  |  |  |
|------------------------|------------------|---------------|----------|---------------|----------------|------------------------|--|--|--|--|
| Discount<br>Rate, %    | NPVS & IRR       | Royalty-Ta    | x Regime | PSC R         | egime          | Units                  |  |  |  |  |
|                        |                  | Gross Project | Post-Tax | Pre-Govt Take | Post-Govt Take |                        |  |  |  |  |
| 0%                     | NPV0             | 6,057         | 3,435    | 6,057         | 2,844          | \$USD Millions, Nomina |  |  |  |  |
| 7%                     | NPV7             | 1,496         | 769      | 1,496         | 636            | \$USD Millions, Nomina |  |  |  |  |
| 10%                    | NPV10            | 877           | 425      | 877           | 348            | \$USD Millions, Nomina |  |  |  |  |
| 15%                    | NPV15            | 382           | 161      | 382           | 127            | \$USD Millions, Nomina |  |  |  |  |
|                        | <b>\$USD IRR</b> | 45.0%         | 29.8%    | 45.0%         | 26.6%          | %                      |  |  |  |  |

| Profit/Investment Ratio, \$USD NPV10 | 1.60                   | 1.51                      |
|--------------------------------------|------------------------|---------------------------|
| Max Exposure                         | \$USD-411 in year 2030 | \$USD-450.64 in year 2030 |
| Payback Year                         | 2033                   | 2033                      |



# High Case - CBM for Pipeline Export to an International Buyer

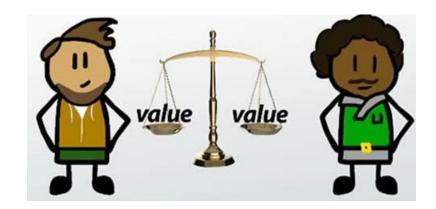


Figure 21: High Case Asset Valuation, Royalty-Tax Pie Chart

Figure 22: High Case Asset Valuation, PSC Pie Chart

## **Conclusions - General**

A number of measures would be required to attract significant and sustained investment in CBM in Mongolia. Those are:


- ➢ fiscal system,
- ➢ legislation,
- > prospectivity,
- data access and
- administrative procedures of the licensing system.

## Conclusions – Fiscal Systems



- A fiscal regime for CBM should take this difference in cost and risk between CBM and conventional gas/petroleum into account.
- Both the quantitative and qualitative assessments in this study indicate that the royalty tax regime would help attract investment for potential CBM business opportunities more than an equivalent PSC regime.
- The barriers to entry identified are expected to have the effect of limiting the number of companies prepared to invest or subsequently impact their ability to raise funds to develop CBM.
- Smaller and highly entrepreneurial companies may be prepared to take on significant risk in relation to early and limited investments.
- However, the global norm is for junior companies to establish the value of a resource and then rely on attracting a larger company to invest or acquire the development opportunity to enable the project to achieve its full scale.
- · These high levels of investment risk may result in only attracting a few investors.
- The pool of investors will also shrink over time as investment shifts away from fossil fuels and into renewables. The window for attracting investment and developing CBM projects is expected to progressively diminish in line with this trend.

# Conclusions – Economic Modelling



- December 2020
- Scale: Low, mid, high
- In all cases, the royalty-tax regime yields significantly higher undiscounted cashflows and rates of return to investors, compared to the PSC regime.
- The fiscal regime should be designed to encourage new investments which will result in multiple project developments and optimized government cashflow at an aggregate level.

## Conclusions – Economic Modelling (cont.)

#### LOW



- From an investor / operator / contactor perspective, projects exemplified by the Low case could not be supported under the PSC and yielded only marginally economic results under the royalty tax terms.
- The impact of this is that under the PSC regime there will be less gas supply that can be developed compared to a royalty-tax regime.
- Natural resource opportunities tend to follow distributions where there are far more "low case" opportunities than "high case" ones.
- The fiscal model chosen influences how many opportunities are economic. Ultimately, lower supply will tend to cause higher gas prices and thus fewer opportunities for economic development.





- Similarly, marginal projects under a PSC framework, as demonstrated by the Mid-Case would struggle to pass through the internal decision-making process for most companies unless returns could be supported by further technical improvement and/or commercial improvement and/or some type of fiscal incentive.
- The Mid Case project yielded economic results under the royaltytax regime terms and could proceed under this fiscal regime.

## Economic Modelling: High Case

- Projects like the High Case could proceed on the economic merits, but the reality decisions are not made on economic merits alone.
- · For most successful businesses, a range of decision criteria are used for their investr
- Decisions of this scale, or requiring entry into a new country, would normally be suppor comprehensive risk and opportunity assessment that is both quantitative and qualitative in i.e. would include a range of non-technical risks.
- These risk and opportunity assessments would include thorough evaluations of the technical, commercial, political, legislative, financial and fiscal, environmental, security and geographical risk for conducting a new business venture in a developing, non-OECD country.
- Compared to the PSC regime, the royalty-tax regime treats smaller scale, lower value projects less harshly than larger scale, more profitable projects.
- At the same time, the royalty-tax regime still provides a "good" level of return to the investor / operator / contractor for those large-scale, more profitable cases.

# Economic Modelling: High Case (cont.)

- For the larger scale projects exemplified by the High case, the returns are high under both regimes, with better aftertax returns for the operator under the royalty tax regime at all discount rates considered.
- The high returns for such a large-scale venture would be considered commensurate with the higher capital exposures (i.e. larger amounts of capital placed at-risk) involved, the longer lead timings to first production, the commercial complexity of the project and higher risks in a new resource play in a new business environment.
- Other criteria such as fiscal certainty, transparency and consistency of the terms and potential future fiscal liabilities for an investor/ operator / contractor would also be considered.
- In most instances, these more qualitative criteria would have a significant weighting in the decision-making process for non-OECD countries where the regimes are still maturing.
- If the fiscal regimes themselves were deemed to pose significant uncertainty and risks to the investor, then these
  factors alone would deter many potential international investors, even if the economic returns and quantitative
  outcomes looked highly attractive at face value

- The quantitative assessment was based on four parameters:
  - 1. Undiscounted and Discounted Cashflow
  - 2. Profit Investment Ratio
  - 3. Payback Year
  - 4. Internal rate of Return
- The economic results derived from the Royalty-Tax regime attained the best quantitative relative ranking of 3 compared to the 1.4 ranking attained by the Mongolian PSC based results.

Conclusions –

Benchmarking

## Conclusions – Quantitative Benchmarking

| 1 = worst result            |   |      |                             | 2 = mid, inconclusive, neutral |     |                              |           | 3 =best result |              |     |     |
|-----------------------------|---|------|-----------------------------|--------------------------------|-----|------------------------------|-----------|----------------|--------------|-----|-----|
| Royalty-Tax PSC<br>Low Case |   | Roya | Royalty-Tax PSC<br>Mid Case |                                | Roy | Royalty-Tax PSC<br>High Case |           | Weightings     | Royalty-Tax  | PSC |     |
|                             | 1 | 1    |                             | 3                              | 1   |                              | 3         | 1              | 25%          | 0.8 | 0.3 |
|                             | 7 | 2    |                             | 3                              | 2   |                              | 3         | 2              | 25%          | 0.8 | 0.5 |
|                             | 1 | 1    |                             | 3                              | 2   |                              | 3         | 2              | 25%          | 0.8 | 0.4 |
|                             | : | 1    |                             | 3                              | 1   |                              | 3         | 1              | 25%          | 0.8 | 0.3 |
|                             |   |      |                             |                                |     | Q                            | uantitat  | ive Relat      | tive Ranking | 3.0 | 1.4 |
|                             |   |      |                             |                                |     | Ľ                            | luantitat | ive kela       | ive Kanking  |     | 5.0 |

Table 18: Quantitative Assessment and Rankings

The qualitative assessment was based on five parameters:

- 1. Transparency of fiscal framework
- 2. Consistency of application of terms
- 3. Certainty of Terms
- 4. Stability/Maturity of fiscal terms
- 5. Capacity for risk mitigation

Conclusions – Qualitative Benchmarking

## **Conclusions – Qualitative Benchmarking**

| Qualitative Ranking          | Royalty-Tax | PSC | Royalty-Tax | PSC | Royalty-Tax                  | PSC | Weightings | Royalty-Tax | PSC |
|------------------------------|-------------|-----|-------------|-----|------------------------------|-----|------------|-------------|-----|
| Quantative Natiking          | Low Case    |     | Mid Case    |     | High Case                    |     |            |             |     |
| Transparency                 | 3           | 1   | 3           | 1   | 3                            | 1   | 20%        | 0.6         | 0.2 |
| Consistency                  | 3           | 1   | 3           | 1   | 3                            | 1   | 20%        | 0.6         | 0.2 |
| Certainty of terms           | 3           | 1   | 3           | 1   | 3                            | 1   | 20%        | 0.6         | 0.2 |
| Stability / Maturity         | 3           | 1   | 3           | 1   | 3                            | 1   | 20%        | 0.6         | 0.2 |
| Capacity for Risk Mitigation | 3           | 1   | 3           | 1   | 3                            | 1   | 20%        | 0.6         | 0.2 |
|                              |             |     |             |     | Qualitative Relative Ranking |     |            | 3.0         | 1.0 |

Table 19: Qualitative Assessment and Rankings

## **Conclusions – International Benchmarking**

### Indonesia



favourable geological conditions

 (prospectivity) in Indonesia for CBM
 Fiscal regime not supportive for the industry development





- The fiscal terms for CBM in China from 2006 -2010 were favourable to contractors but the production targets were not achieved.
- Approx. 70% of exploration expenditures were from foreign companies but most had low market capitalisation and limited capacity.

## Conclusions – CBM Prospectivity

We would perceive CBM prospectivity in Mongolia to be

low and limited information available.

- Gas content;
- Gas saturations;
- Permeability;
- Permeability distribution; and
- Water content.

## Conclusions – CBM Data

- Data Requirements (Queensland example)
  - studies,
  - seismic,
  - Well data,
  - Production data,
  - Laboratory reports.
- Data must be submitted in a defined form within a defined period.
- Data is made available publicly after a defined period of confidentiality; provides explorers an opportunity to utilise and learn from historical data acquired.

## Conclusions – Barriers to Entry

- 1. "Barriers entry,"
- 2. CBM Prospectivity,
- 3. Data Access,
- 4. Technical Risk,
- 5. Legislation.

## Conclusions – Barriers to Entry (cont.)

- The Law of Mongolia on Petroleum (the new addition) raises a number of issues that would act as potential barriers to entry.
  - The PSC Profit Sharing provisions
  - A contractor is required to submit the reserve estimate to the Petroleum Authority 90 days before the expiry of the exploration period for review.
  - international standards such as Society of Petroleum Engineers Petroleum Reserves Management System (SPE-PRMS) needed

## Conclusions – Barriers to Entry (cont.)

- The Law of Mongolia on Petroleum (the new addition) raises a number of issues that would act as potential barriers to entry
- PSC terms are to be negotiated at the time an exploration licence is awarded. There are no clear guidelines as to how these terms and conditions are evaluated and agreed by authorities and there is no provision to amend PSC terms subsequent to the award of an exploration licence.
- The PSC Profit Sharing provisions are based on a production rate threshold but are not graduated. This would potentially lead to investors considering the terms to be distortionary in that decisions and alignment on the sizing of a plant may be influenced by the profit sharing terms.
- A contractor is required to submit the reserve estimate to the Petroleum Authority 90 days before the expiry of the exploration period for review.
- Based on international standards such as Society of Petroleum Engineers Petroleum Reserves Management System (SPE-PRMS) it is unlikely that reserves could be estimated (booked) in the absence of a plan of development and appropriate approvals to exploit. It is unlikely this requirement could be met.

## Conclusions – Barriers to Entry (cont.)

• Legislation: Overlapping Licenses

### Infrastructure:

- Gas infrastructure is limited in Mongolia. There is no pipeline network in Mongolia and accordingly transportation
  of gas to markets will necessarily be linked to specific gas developments as they evolve unless pre-investment in
  infrastructure is undertaken by the GoM.
- Any pre-investment in infrastructure would be high risk due to poor knowledge of the resources that could potentially be developed.
- It is noted that an initiative to develop a Methane Gas Supply Chain Development Master Plan has commenced.
   Whilst this report will address infrastructure amongst other issues it is anticipated that the absence of a good understanding of the CBM resource will pose a challenge.







