

Coalbed Methane Resources of Mongolia

Goals, Scope, Classification

Ulaanbaatar, Mongolia

Tim A Moore, Managing Director, Cipher Consulting Pty Ltd

14 June 2022

Cipher Doc#: 22-417

Purpose of Course

- Consider what overall goals are for any resource assessment
- Review the Scope and Goals of THIS resource assessment
- Review resource classifications and concept of analogue
- Review resource estimate techniques
- ✤ Hydrogeology
 - Concepts for CBM
 - ✤ Water production
 - ✤ Mongolian examples
- Review of Methods and Results of THIS resource assessment
- Next steps: Recommendations

Coalbed Methane Resources of Mongolia Workshop

		total time						
from	То	(hr:min)	Торіс	Presenter				
9:00	9:15	0:15	Opening Remarks					
9:15	10:45	1:30	BACKGROUND	Tim A Moore				
9:15	9:30	0:15	Goals of Any Resource Assessment					
9:30	9:45	0:15	Scope and Goals of This Resource Assessment					
9:45	10:15	0:30	Resource Classification (OGIP vs Prospective Resources) and Concept of an Analogue					
10:15	10:45	0:30	Resource Estimation Techniques Review					
10:45	11:00	0:15	Coffee Break					
11:00	13:00	2:00	HYDROGEOLOGY	Ryan D Morris				
11:00	11:30	0:30	- Hydrogeology concepts for CBM					
11:30	12:00	0:30	Case Study: Australia					
12:00	12:30	0:30	- What Happens With Water During Production					
12:30	13:00	0:30	- Mongolian Examples					
13:00	14:00	1:00	LUNCH					
14:00	17:00	3:00	REVIEW OF METHODS AND RESULTS OF RESOURCE REPORT	TAM				
14:00	14:40	0:40	- Delineation of Areas for Assessment and Selection Criteria					
14:40	15:10	0:30	- Data Types and Limitations					
15:10	15:30	0:20	- Evaluation & Input Parameters					
15:30	15:45	0:15	Coffee Break					
15:45	16:30	0:45	- Results of Assessment					
16:30	16:50	0:20	NEXT STEPS, RECOMMENDATIONS & DISCUSSION	TAM, All				
16:50	17:00	0:10	Closing Remarks					

NOTE: Times are in UB, Mongolian Times

Goals of a Resource Assessment

Q: What are the goals for a resource assessment?

A: Depends on what or who you are.

Exploration Companies:

- > Identify the resource
- > Develop the potential to a low level (original gas in-place [OGIP], possibly Prospective Resources)
- > Little to no drilling
- Sell permit based on <u>potential</u> (i.e. undiscovered resources)

Production Companies (small):

- Certification of resources AND reserves
- Initial Public Offer (IPO) to raise capital for further development
- Production leading to farm-outs/merger/sale

Production Companies (private/large):

- > Assessment of resource for internal economic assessments
- > Move to working pilots (proof of concept) and production

Goals of a Resource Assessment (cont'd)

Goals of THIS Resource Assessment

SCOPE:

Assessment of CBM Resources for all of Mongolia

GOALS:

90°E 110°E 50°N 50°N 50°N 50°N 60°N 60°N

High-Level Goals

- > Encourage exploration and investment in coalbed methane development in Mongolia
- > The assessment is open to interrogation and revision
- > Data and methodology are transparent, repeatable and public

Practical Goals

- Adopt a workflow system for assessment
- Collect enough data for analogues to be used
- Build local capability so that assessment can be ongoing and so evaluation of private sector resource determinations can be thoroughly evaluated and understood

- Very comprehensive
- Expensive for a complete copy

- Concise
- Some ambiguity
- Easy to access

- Comprehensive
- Free to access
- Updated regularly

(these three systems are compared and contrasted in Moore & Friederich, 2021)

Why are classifications needed & which one to use?

- To give common criteria and terminology
- Make assessments and comparable between projects/permits and companies
- Provide transparency of assessments to potential investors

- Required by governmental regulators
- Required of public companies by some stock exchanges

PETROLEUM RESOURCE MANAGEMENT SYSTEM

Undiscovered Gas (CBM)

Original Gas In-place (OGIP)

Potential gas in potential reservoirs, requires only confirmation of the presence and possible ranges of coal thickness, distribution and 'rank' (does not require gas measurement)

Prospective Resources

Same criteria as OGIP, but removes <u>unrecoverable</u> gas, such as in areas of inaccessibility and makes estimates of ranges of deliverability (i.e. producibility) of the gas (does not require gas measurement)

Analogues are used in CBM resource estimation when there is little to no initial data on the reservoirs – i.e. during initial exploration and resource assessments.

"Analogs are widely used in resources estimation, particularly in the exploration and early development stages when direct measurement information is limited. The methodology is based on the assumption that the analogous reservoir is comparable to the subject reservoir in regard to reservoir description, fluid properties, and most likely recovery mechanism(s) applied to the project that control the ultimate recovery of petroleum. By selecting appropriate analogs, where performance data of comparable development plans are available, a similar production profile may be forecast. Analogs are frequently applied for aiding in the assessment of economic producibility, production decline characteristics, drainage area, and recovery factor (for primary, secondary, and tertiary methods).' – PRMS (2018)

"Comparison to several analogs, rather than a single analog, often improves the understanding of the range of uncertainty in the estimated recoverable quantities from the subject reservoir." – PRMS (2018)

Analogues are used in CBM resource estimation when there is little to no initial data on the reservoirs – i.e. during initial exploration and resource assessments.

Levels of Analogues are:

1. Same basin, same formation, same rank, close proximity (e.g. adjacent permits)

Analogues are used in CBM resource estimation when there is little to no initial data on the reservoirs – i.e. during initial exploration and resource assessments.

Levels of Analogues are:

- 1. Same basin, same formation, same rank, close proximity (e.g. adjacent permits)
- 2. Same region, similar depositional setting, same rank, similar tectonic setting and reservoir character (ash yield, petrography)

Analogues are used in CBM resource estimation when there is little to no initial data on the reservoirs – i.e. during initial exploration and resource assessments.

Levels of Analogues are:

- 1. Same basin, same formation, same rank, close proximity (e.g. adjacent permits)
- 2. Same region, similar depositional setting, same rank, similar tectonic setting and reservoir character (ash yield, petrography)
- 3. Same rank, similar tectonic setting and reservoir character

Resource Estimation Technique

VARIABLE	DISTRIBUTION
Surface Area	Linear/uniform
Coal Thickness	
Density	
Gas Content	
Recovery Factor	

Input of ranges for parameters

	<u> う、 ぐ、 =</u>			GIP Calculation Sc	outh Gobi [Comp	atibility Mode] -	- Excel		
Fil	le Home Insert Page Layout	Formulas Data	Review View	Help @RISK Q	Tell me what y	ou want to do			
Distr	Define Add Insert Define Di cributions Output Function ~ Correlations ~ I Model	istribution Model Da Fitting ~ Window View	Iterations Simulations wer Settings 2	100000 1 Start Simulation	Excel Brows Reports Result	Summar T Define F ts Results	y ilters Adva Mal	Advanced Library Analyses ~ ~ Tools	
F3	\bullet : \times \checkmark f_x =Ri	iskUniformAlt(0.5%,C	3,99.5%,E3,RiskSta	atic(D3))					
	A _	D	Е	F	G	Н	I	J	
1	South Gobi -ASI	urface Area (m²)			Thickness (m)				
2	Formation	Base	High	Risk	Low	Base	High	Risk	
3	Area 1	290,070,000	322,300,000	290,070,000	51.00	102.00	142.80	102.00	8,21
4	Area 2a	2,147,580,000	2,386,200,000	2,147,580,000	25.00	50.00	70.00	50.00	29,82
5	Area 2b	1,457,175,000	1,942,900,000	1,457,175,000	12.50	50.00	55.00	50.00	8,50
6	0	0	0	0	0.00	0.00	0.00	0.00	
7	0	0	0	0	0.00	0.00	0.00	0.00	
8	0	0	0	0	0.00	0.00	0.00	0.00	
9	0	0	0	0	0.00	0.00	0.00	0.00	
10	0	0	0	0	0.00	0.00	0.00	0.00	
11	0	0	0	0	0.00	0.00	0.00	0.00	
12	0	0	0	0	0.00	0.00	0.00	0.00	
13	0	0	0	0	0.00	0.00	0.00	0.00	
14	0	0	0	0	0.00	0.00	0.00	0.00	

E	「5 ~ ∂ ~	₹	Calaulatia		- Mailaila	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	la 11 a 12 a a	GI	P Calculation	Sou	th Gobi [Comp	oatibility Mo	de] - Exce	I		
Fil	e Home	Insert	Page Layout	Formulas	Data	Revie	w View	Help	@RISK	Q	Tell me what y	ou want to	do			
[Dist	Define Add ributions Output F	fx Insert Function ~	Define Correlations ~	Distribution Fitting ~	Model Window	Data Viewer	lterations Simulations Settings 🌋	100000 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Start Simulatio	on	Excel Brow Reports Resu	se lts	nmary ine Filters 💼 %	Adva Analy	anced Library	Swap (@RIS
			Model					Simulatio	n l			Results			Tools	
$J3 \checkmark fx =$				RiskTriang(G3, H3, I3, RiskStatic(H3))					_					_		-
		А			D		Е		F		G	н_		, <u>'</u>	J	
1 South Gobi -ASI			Surface Area (m²)							Thickness (m)						
2	Fo	ormatio	n	Ba	ase		High	F	Risk		Low	Base	т Т	igh	Risk	
3	Area 1			290,0	70,000	32	2,300,000	290,	070,000		51.00	102.00	14	2.80	102.00	8,21
4	Area 2a			2,147,5	580,000	2,3	86,200,000	2,147	,580,000		25.00	50.00	70	0.00	50.00	29,82
5	Area 2b			1,457,1	175,000	1,9	42,900,000	1,457	,175,000		12.50	50.00	55	5.00	50.00	8,50
6	0				0		0		0		0.00	0.00	0	.00	0.00	
7	0				0		0		0		0.00	0.00	0	.00	0.00	
8	0				0		0		0		0.00	0.00	0	.00	0.00	
																1.1

	.	~ .	alaulatia		Tasiaia Cha		GIP Calculatio	on South Gobi [Com	oatibility N	1ode] - Excel				Sign	in 🗗	- 0	×
	File Home	Insert	Page Layout	Formulas	Data Review	View He	elp @RISK	Q Tell me what	/ou want t	o do						ዲ sł	hare
Parallels Share	Define Ado Distributions Outp	fx d Insert ut Function ~ .ill. @RISK - C	Define Correlations ~ Dutput: AM3	Distribution Fitting ~ V	Model Data Vindow Viewer S	terations 100 iimulations 1 iettings <u>र</u> 🗊	0000 - Star	t Excel Brow	se Its ults	ummary refine Filters	Advanced Library Advases Tools	Swap Out @RISK	✓ Utilities ∽ Color Cell Thumbnai Utilities	s ¥ Help			~
11	-		South Go	obi Area 1 F	Prospective Res	sources			▼ s")&	"")),0,#VALUE!)+	+AL3						~
Aretha's tr work	1 South (2 3 Area 1 4 Area 2a 5 Area 2b	10% 8%	2,269	0.0%	10.0º	% Mi	South G 1 Prosp Resourc	iobi Area ective ces 550.1	K 246 183 260	AL Risk 18705.624 12692.132	AM 5677.019 18705.62 12692.13	AN	AO	AP	AQ	AR	
document DWGSee P 2020	6 0 7 0 8 0 9 0 10 0 11 0 12 0	6% 4% 2%		1		Ma Ma St 10	aximum ean edian d Dev 0%	17,680.70 5,236.50 4,823.72 2,578.12 2,269.22		#VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE!	31397.76						
USGS patte GIS	13 0 14 0 15 0 16 0 17 0	0%	0,00,0	0,00,00	D,0€,0 € ,0 ₹ - ▲ ※ 0.00	90 6,06,0¥a 0.00)% alues 7 A Q	8,753.8 295 Close	0	#VALUE! #VALUE! #VALUE! #VALUE! #VALUE!							
@RISK Sir	nulating (2 CPUs)			0.00	0.00	0.00 0.00 0.00	0 0 0	0 0 0	0 0	#VALUE! #VALUE! #VALUE!							
Iteration:	2510 of 100000		←	0.00	0.00	0.00	0	0	0	#VALUE!		_					
Simulation: Runtime:	1 of 1 00:00:16 of 00:1	15:54		0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0 0 0	0 0 0 0	0 0 0	#VALUE! #VALUE! #VALUE!		- 2!	510 o	ut of	100,	000	
Iters Per Se	c: 103.36			0.00	0.00	0.00	0	0	0 0 0	#VALUE! #VALUE! #\/ALUE!							
	GIP - input @risk-DO NOT INPUT Workings Image: Comparison of the comparison of the																

q		P90	3,641	103 BCM
	OGIP (BCF)	P50	7,506	213 BCM
es		P10	13,378	378 BCM
LC Ve	Estimated Recovery	Low	45	
on co	Estimated Necovery	Base	65	Based on commonly used recovery factors in CBM
lis es	1 801013 (70)	High	85	
R P	Unrisked	P90	2,308	65 BCM
	Prospective	P50	4,841	137 BCM
	Resources (BCF)	P10	8,823	250 BCM

Resource Estimation Technique

Australia Mongolia Extractives Program Phase 2 (AMEP 2) is supported by the Australian Government through the Department of Foreign Affairs and Trade (Australian Aid) and implemented by Adam Smith International.

Adam Smith International

Tim Moore is currently the Managing Director of Cipher Consulting Pty Ltd specializing in advising on coal and coalbed methane exploration. He is also Adjunct Associated Professor at the School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia and a Distinguished Visiting Professor at the School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, China. Tim is also on the Editorial Boards for the International Journal of Coal Geology and the Indonesian Journal on Geoscience. He has over 260 published papers, reports and abstracts. Over the last 40 years, Tim has worked in production companies, academia and government positions in many parts of the world. (tmoore@ciphercoal.com)

If you want to know more go to the Cipher website & Blog: <u>https://www.ciphercoal.com</u>

Got Questions?

Please visit our website for more information about activities or contact Oyunbileg Purev, Partnership Manager at oyunbileg@amep.mn.

@www.AMEP.mn @AusMonXtractive @AMEP2